Nguồn: IOBC Capital
Là một mô hình Internet mới phi tập trung, cởi mở và minh bạch, Web3 có cơ hội tích hợp tự nhiên với AI. Theo kiến trúc tập trung truyền thống, tài nguyên dữ liệu và tính toán AI được kiểm soát chặt chẽ và có nhiều thách thức như tắc nghẽn năng lượng tính toán, rò rỉ quyền riêng tư và hộp đen thuật toán. Web3 dựa trên công nghệ phân tán và có thể tạo động lực mới cho sự phát triển của AI thông qua mạng máy tính dùng chung, thị trường dữ liệu mở, máy tính cá nhân và các phương pháp khác. Đồng thời, AI cũng có thể mang lại nhiều sức mạnh cho Web3, chẳng hạn như tối ưu hóa hợp đồng thông minh, thuật toán chống gian lận, v.v., để hỗ trợ xây dựng hệ sinh thái của nó. Do đó, việc khám phá sự kết hợp giữa Web3 và AI là rất quan trọng để xây dựng cơ sở hạ tầng Internet thế hệ tiếp theo và giải phóng giá trị của dữ liệu và sức mạnh tính toán.
Dựa trên dữ liệu: Nền tảng vững chắc của AI và Web3
Dữ liệu là cốt lõi thúc đẩy sự phát triển của AI Power chính là nhiên liệu cho động cơ. Các mô hình AI cần xử lý một lượng lớn dữ liệu chất lượng cao để có được sự hiểu biết sâu sắc và khả năng suy luận mạnh mẽ. Dữ liệu không chỉ cung cấp cơ sở đào tạo cho các mô hình học máy mà còn xác định độ chính xác và độ tin cậy của mô hình.
Trong mô hình sử dụng và thu thập dữ liệu AI tập trung truyền thống, có những vấn đề chính sau:
Chi phí thu thập dữ liệu cao, khiến các doanh nghiệp vừa và nhỏ khó có thể chi trả;
- < p style="text-align: left ;">Tài nguyên dữ liệu bị các gã khổng lồ công nghệ độc quyền, hình thành các đảo dữ liệu;
Dữ liệu cá nhân quyền riêng tư phải đối mặt với nguy cơ rò rỉ và lạm dụng
Web3 có thể giải quyết các điểm yếu của mô hình truyền thống bằng mô hình dữ liệu phi tập trung mới.
Thông qua Grass, người dùng có thể bán các mạng nhàn rỗi cho các công ty AI và nắm bắt chúng theo cách phi tập trung Dữ liệu mạng, sau khi được làm sạch và chuyển đổi, sẽ cung cấp dữ liệu thực, chất lượng cao cho việc đào tạo mô hình AI;
AI công cộng áp dụng "nhãn để kiếm", mô hình này sử dụng mã thông báo để khuyến khích người lao động toàn cầu tham gia chú thích dữ liệu, thu thập kiến thức chuyên môn toàn cầu và nâng cao khả năng phân tích dữ liệu;
Các nền tảng giao dịch dữ liệu blockchain như Ocean Protocol và Streamr cung cấp môi trường giao dịch cởi mở và minh bạch cho cả bên cung và bên cầu dữ liệu, kích thích đổi mới và chia sẻ dữ liệu.
Mặc dù vậy, cũng có một số vấn đề trong việc lấy dữ liệu trong thế giới thực, chẳng hạn như chất lượng dữ liệu khác nhau, khó xử lý và sự đa dạng và sự thiếu đại diện, trong số những người khác. Dữ liệu tổng hợp có thể là ngôi sao tương lai của cuộc đua dữ liệu Web3. Dựa trên công nghệ và mô phỏng AI tổng hợp, dữ liệu tổng hợp có thể mô phỏng các thuộc tính của dữ liệu thực và đóng vai trò bổ sung hiệu quả cho dữ liệu thực để cải thiện hiệu quả sử dụng dữ liệu. Trong các lĩnh vực như lái xe tự động, giao dịch thị trường tài chính và phát triển trò chơi, dữ liệu tổng hợp đã cho thấy tiềm năng ứng dụng hoàn thiện của nó.
Bảo vệ quyền riêng tư: Vai trò của FHE trong Web3
Trong kỷ nguyên dựa trên dữ liệu, bảo vệ quyền riêng tư đã trở thành tâm điểm chú ý của toàn cầu, việc đưa ra các quy định như Quy định chung về bảo vệ dữ liệu (GDPR) của Liên minh Châu Âu phản ánh việc bảo vệ nghiêm ngặt quyền riêng tư cá nhân. Tuy nhiên, điều này cũng mang đến những thách thức: một số dữ liệu nhạy cảm không thể được sử dụng hết do rủi ro về quyền riêng tư, điều này chắc chắn sẽ hạn chế tiềm năng và khả năng suy luận của các mô hình AI.
FHE là mã hóa đồng cấu hoàn toàn, cho phép các hoạt động tính toán được thực hiện trực tiếp trên dữ liệu được mã hóa mà không cần giải mã dữ liệu và kết quả tính toán giống như kết quả được thực hiện trên dữ liệu bản rõ Các kết quả của phép tính tương tự là nhất quán.
FHE cung cấp khả năng bảo vệ vững chắc cho điện toán bảo mật AI, cho phép sức mạnh tính toán của GPU thực hiện các tác vụ suy luận và đào tạo mô hình trong môi trường không chạm vào dữ liệu gốc. Điều này mang lại cho các công ty AI một lợi thế rất lớn. Họ có thể mở các dịch vụ API một cách an toàn đồng thời bảo vệ bí mật kinh doanh.
FHEML hỗ trợ mã hóa dữ liệu và mô hình trong toàn bộ chu trình học máy để đảm bảo tính bảo mật của thông tin nhạy cảm và ngăn ngừa nguy cơ rò rỉ dữ liệu. Bằng cách này, FHEML tăng cường quyền riêng tư dữ liệu và cung cấp khung điện toán an toàn cho các ứng dụng AI.
FHEML là phần bổ sung cho ZKML chứng tỏ khả năng thực thi chính xác của máy học, trong khi FHEML nhấn mạnh các tính toán trên dữ liệu được mã hóa để duy trì quyền riêng tư của dữ liệu.
Cuộc cách mạng sức mạnh tính toán: Điện toán AI trong các mạng phi tập trung
Hệ thống AI hiện tại Độ phức tạp tính toán tăng gấp đôi cứ ba tháng một lần, dẫn đến nhu cầu về sức mạnh tính toán tăng vọt vượt xa khả năng cung cấp tài nguyên máy tính hiện có. Ví dụ, việc đào tạo mô hình GPT-3 của OpenAI yêu cầu sức mạnh tính toán rất lớn, tương đương với 355 năm thời gian đào tạo trên một thiết bị. Sự thiếu hụt sức mạnh tính toán như vậy không chỉ hạn chế sự tiến bộ của công nghệ AI mà còn khiến các mô hình AI tiên tiến nằm ngoài tầm với của hầu hết các nhà nghiên cứu và phát triển.
Đồng thời, tỷ lệ sử dụng GPU toàn cầu thấp hơn 40%, cùng với sự chậm lại trong cải tiến hiệu suất bộ vi xử lý, cũng như tình trạng thiếu chip do nguồn cung gây ra yếu tố chuỗi và địa chính trị, tất cả những điều này làm cho vấn đề cung cấp năng lượng điện toán trở nên nghiêm trọng hơn. Những người thực hành AI đang ở trong tình thế tiến thoái lưỡng nan: mua phần cứng của riêng họ hoặc thuê tài nguyên đám mây. Họ rất cần một phương pháp dịch vụ điện toán theo yêu cầu, tiết kiệm chi phí.
IO.net là mạng điện toán AI phi tập trung dựa trên Solana. Nó cung cấp cho các công ty AI nền tảng hiện có bằng cách tổng hợp các tài nguyên GPU nhàn rỗi trên toàn thế giới. và thị trường điện toán dễ tiếp cận. Những người yêu cầu sức mạnh tính toán có thể xuất bản các nhiệm vụ tính toán trên mạng và các hợp đồng thông minh phân bổ nhiệm vụ cho các nút khai thác đóng góp sức mạnh tính toán. Người khai thác thực hiện các nhiệm vụ và gửi kết quả, đồng thời nhận phần thưởng điểm sau khi xác minh. Giải pháp của IO.net cải thiện hiệu quả sử dụng tài nguyên và giúp giải quyết các điểm nghẽn về năng lượng tính toán trong các lĩnh vực như AI.
Ngoài các mạng sức mạnh tính toán phi tập trung nói chung, còn có các nền tảng như Gensyn và Flock.io tập trung vào đào tạo AI, cũng như Ritual và Fetch. ai. Một mạng máy tính chuyên dụng tập trung vào suy luận AI.
Mạng sức mạnh tính toán phi tập trung cung cấp một thị trường sức mạnh tính toán công bằng và minh bạch, phá vỡ sự độc quyền, giảm ngưỡng ứng dụng và cải thiện hiệu quả sử dụng sức mạnh tính toán. Trong hệ sinh thái web3, mạng điện toán phi tập trung sẽ đóng vai trò quan trọng trong việc thu hút nhiều dapp sáng tạo hơn tham gia và cùng thúc đẩy sự phát triển và ứng dụng công nghệ AI.
DePIN: Web3 hỗ trợ Edge AI
Hãy tưởng tượng điện thoại di động hoặc đồng hồ thông minh của bạn và thậm chí cả thiết bị thông minh tại nhà có khả năng chạy AI - đây chính là điểm hấp dẫn của Edge AI. Nó cho phép thực hiện các phép tính tại nguồn tạo dữ liệu, đạt được độ trễ thấp và xử lý theo thời gian thực đồng thời bảo vệ quyền riêng tư của người dùng. Công nghệ Edge AI đã được áp dụng cho các lĩnh vực chính như lái xe tự động.
Trong trường Web3, chúng tôi có một cái tên quen thuộc hơn—DePIN. Web3 nhấn mạnh đến tính phân quyền và chủ quyền dữ liệu của người dùng. DePIN có thể tăng cường bảo vệ quyền riêng tư của người dùng và giảm nguy cơ rò rỉ dữ liệu bằng cách xử lý dữ liệu cục bộ trên Web3
bản địa. Cơ chế kinh tế Token có thể thúc đẩy các nút DePIN cung cấp tài nguyên điện toán và xây dựng một hệ sinh thái bền vững.
DePIN hiện đang phát triển nhanh chóng trong hệ sinh thái Solana và trở thành một trong những nền tảng chuỗi công khai được ưa thích để triển khai dự án. TPS cao, phí giao dịch thấp và đổi mới công nghệ của Solana mang lại sự hỗ trợ mạnh mẽ cho dự án DePIN. Hiện tại, giá trị thị trường của các dự án DePIN trên Solana đã vượt quá 10 tỷ USD và các dự án nổi tiếng như Render Network và Helium Network đã đạt được tiến bộ đáng kể.
IMO: mô hình mới cho việc phát hành mô hình AI
Khái niệm IMO lần đầu tiên được đề xuất bởi giao thức Ora Tokenize các mô hình AI.
Ở mô hình truyền thống, do thiếu cơ chế chia sẻ doanh thu nên một khi mô hình AI được phát triển và đưa ra thị trường, các nhà phát triển thường gặp khó khăn để có được lợi ích bền vững từ việc sử dụng mô hình sau này, đặc biệt là khi mô hình được tích hợp vào các sản phẩm và dịch vụ khác, khiến người sáng tạo ban đầu khó theo dõi việc sử dụng chứ chưa nói đến việc thu được doanh thu từ nó. Hơn nữa, hiệu suất và tác dụng của các mô hình AI thường thiếu minh bạch, khiến các nhà đầu tư và người dùng tiềm năng khó đánh giá giá trị thực của chúng, hạn chế khả năng nhận diện thị trường và tiềm năng thương mại của các mô hình.
IMO cung cấp một cách mới để hỗ trợ tài chính và chia sẻ giá trị cho các mô hình AI nguồn mở. Nhà đầu tư có thể mua mã thông báo IMO và chia sẻ lợi nhuận tiếp theo do mô hình tạo ra. Giao thức Ora sử dụng hai tiêu chuẩn ERC là ERC-7641 và ERC-7007, kết hợp với AI Oracle (Onchain AI Oracle) và công nghệ OPML để đảm bảo tính xác thực của mô hình AI và chủ sở hữu token có thể chia sẻ lợi ích.
Mô hình IMO tăng cường tính minh bạch và tin cậy, khuyến khích cộng tác nguồn mở, thích ứng với xu hướng thị trường mã hóa và tăng cường sức mạnh cho sự phát triển bền vững của công nghệ AI. IMO vẫn đang trong giai đoạn thử nghiệm ban đầu, nhưng khi sự chấp nhận của thị trường tăng lên và phạm vi tham gia mở rộng thì sự đổi mới và giá trị tiềm năng của nó rất đáng mong đợi.
Tác nhân AI: Kỷ nguyên mới của trải nghiệm tương tác
Tác nhân AI có thể nhận biết môi trường và suy nghĩ độc lập và thực hiện các hành động tương ứng để đạt được mục tiêu đã đề ra. Với sự hỗ trợ của các mô hình ngôn ngữ lớn, Tác nhân AI không chỉ có thể hiểu ngôn ngữ tự nhiên mà còn có thể lập kế hoạch ra quyết định và thực hiện các nhiệm vụ phức tạp. Họ có thể đóng vai trò là trợ lý ảo tìm hiểu sở thích của người dùng thông qua tương tác với họ và cung cấp các giải pháp được cá nhân hóa. Ngay cả khi không có hướng dẫn rõ ràng, AI Agent vẫn có thể giải quyết vấn đề một cách tự động, nâng cao hiệu quả và tạo ra giá trị mới.
Myshell là nền tảng ứng dụng gốc AI mở cung cấp bộ công cụ sáng tạo toàn diện và dễ sử dụng, cho phép người dùng định cấu hình các chức năng, hình thức, âm thanh và kết nối với các cơ sở tri thức bên ngoài, v.v., cam kết tạo ra một hệ sinh thái nội dung AI công bằng và cởi mở, sử dụng công nghệ AI tổng quát để trao quyền cho các cá nhân trở thành siêu sáng tạo. Myshell đã đào tạo một mô hình ngôn ngữ lớn chuyên biệt để giúp việc nhập vai trở nên nhân văn hơn; công nghệ nhân bản giọng nói có thể tăng tốc độ tương tác cá nhân hóa với các sản phẩm AI MyShell giúp giảm 99% chi phí tổng hợp giọng nói và nhân bản giọng nói có thể được thực hiện chỉ trong 1 phút. AI Agent được tùy chỉnh bằng Myshell hiện có thể được sử dụng trong nhiều lĩnh vực như trò chuyện video, học ngôn ngữ và tạo hình ảnh.
Về mặt tích hợp Web3 và AI, hiện tại, phần lớn là khám phá lớp cơ sở hạ tầng, cách lấy dữ liệu chất lượng cao, bảo vệ quyền riêng tư của dữ liệu và cách vận hành trên chuỗi Trên mô hình lưu trữ, cách cải thiện việc sử dụng hiệu quả sức mạnh tính toán phi tập trung, cách xác minh các mô hình ngôn ngữ lớn và các vấn đề quan trọng khác. Khi các cơ sở hạ tầng này dần được cải thiện, chúng tôi có lý do để tin rằng việc tích hợp Web3 và AI sẽ tạo ra một loạt các mô hình và dịch vụ kinh doanh sáng tạo.